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Review of basic concepts of probability 

The notation used in probability theory is closely related to Set Theory in Mathematics.  

Preliminary definitions 

 Experiment (ε): observation of a physical phenomenon. Of each REALIZATION or ESSAY of an 

experiment, an OUTCOME is obtained.  

 Sample Space (Ω): complete set of all the possible outcomes of an experiment.  

 Event (A): set of outcomes of an experiment (a subset of the sample space).  

 Certain event: An event which is sure to occur at every performance of an experiment is 

called a certain event connected with the experiment (‘head or tail’ is a certain event when 

tossing a coin).  

 Impossible event: An event which cannot occur at any performance of the experiment is 

called an impossible event (`seven’ in case of throwing a die).  

 Inclusion (or implication) (A⊂B). A is included in B (or A implies B) iff the occurrence of 

event A produces the occurrence of event B.  

 Union of events A and B (A∪B, or A+B): The union of events A and B holds true iff A or B 

holds true. It is not necessary that all events must hold true.  

 Intersection (or product) (A∩B, or AB): The intersection of events A and B can only be true 

iff both events hold true.  

 Complementary event: An event B is complementary of A, if it is verified if and only if (iff) A 

is not verified (‘head’ and ‘tail’ are complementary to each other in the experiment of 

tossing a coin).  

 Mutually Exclusive events (or incompatible): A and B are mutually exclusive iff they are not 

verified simultaneously (A∩B=∅). 

 Compound event: A is a compound event iff: 

∃B, C ≠ ∅, and B, C≠ A/B, C ⊂ or A = B ∪ C 

https://www.otexts.org/sfml
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Axiomatic definition of probability 

Probability is a measure of uncertainty. Once a random experiment is defined, we call probability of 

the event A the real number P(A)∈ [0,1]. The function P(·):Ω→ [0,1] is called probability measure or 

probability distribution and must satisfy the following three axioms:  

 P(A) ⩾0; the probability is always a non-negative value. 

 P(Ω) =1; the probability of the certain event is one (the maximum value). 

 ∀ A, B / A ∩ B = ∅ ⇒P(A∪B) = P(A) + P(B); if two events are complementary, the probability 

of the union event equals the sum of probabilities. 

The axiomatic definition of probability allows us to construct a robust theory of probability. To 

better understand the concept of probability we rely on the `Frequentist definition’: 

 Frequentist definition of probability: The probability P(A) of an event A is the limit: 

 

 Where N is the number of observations and NA is the number of times that event A 
occurred. 

Conditional probability and Bayes’ theorem 

Given two events A and B, and considering P(B)≥0;, the conditional probability is defined with the 

following expression: 

 

This definition fulfills the three axioms of the axiomatic definition of probability. 
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Figure 1 Representation of two events with intersection 

P(A/B) can be understood as the probability of the intersection event (A∩B) when event B occurs.  

Bayes’ Theorem: The conditional probabilities P(A/B) and P(B/A), can be related with the Bayes 

Theorem. 

 

Partition of the sample space, and total probability 

The set of events {A1, A2, ⋅⋅⋅, An} is a Partition of the Sample Space Ω iff: 

a. all the events in the partition are mutually exclusive.  

b.  

c.  

Given a partition {A1, A2, ⋅⋅⋅, An}, it is possible to calculate the probability of any event B defined in 

the sample space Ω, applying the Total Probability theorem, defined with the following expression: 

 

And applying the Bayes theorem:  
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Example: A transmission system can send one of the following letters in binary code: A=100, B=110, 

C=111. The prior probability of transmitting each letter is: P(A)=0.4; P(B)=0.4; P(C)=0.2. 

a. Randomly select one symbol of the transmitted signal. Calculate the probability of this 

symbol to be 1.  

 

Answer: 

 

 

b. Suppose the selected symbol is 1. Calculate the most likely transmitted letter. 

 

Answer: 

 

Therefore, the most likely transmitted letter is B. 

3 6 Partition of Sample Space, Bayes Formula with Example 

For further explanations about these concepts: 3 6 Partition of Sample Space, Bayes Formula with 

Example 

  

https://www.youtube.com/watch?v=NRFe1tGyCsQ
https://www.youtube.com/watch?v=NRFe1tGyCsQ
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Independency 

Two events A and B are independent iff: 

a. P(A∩B) = P(A)P(B) 

b. P(A/B) = P(A) 

c. P(B/A) = P(B) 

Random variables 

A random variable is defined by assigning a number to each result of a random experiment.  

Definition: Given a random experiment which generates a sample space, defined as {Ω, ε, P(⋅)}, a 

random variable x is the result of mapping which assigns a real number x to every 

outcome ω, with the following conditions: 

1. The set  is an event for every x. 

2. The probabilities  

Cumulative distribution function 

Random variables are usually characterized with the Cumulative Distribution Function (or just 

Distribution Function), and the Probability Density Function, which are related.  

The Cumulative Distribution Function is defined with the following expression 

 

Properties of the distribution function: 

 

Example: The distribution function of the random variable built assigning numbers to the results of 

the experiment `throwing a die’ is the following (note that the random variable is discrete): 
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Figure 2 Cumulative Distribution Function of the random variable of the `throwing a die’ experiment  

© University of Alcalá 

Probability density function 

The Probability Density Function (PDF) gives information about how likely a value of a random 

variable is. It is not directly the probability but the probability per unit length. For a given random 

variable X we define the PDF as follows: 

 

For step discontinuities in the CDF, the Dirac delta function is used to describe the PDF. 
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Properties: 

 

The PDF of discrete random variables accumulate the probability in a finite and numerable number 

of values, which are the possible values. Its PDF can be expressed using the Dirac delta function: 

 

Expectation, and moments of a random variable 

Suppose a random variable X, from which N samples are known (X1,X2,X3, ..., Xn).   Expectation is 

defined with the following expression: 

 

Moments 

For any positive integer r, the r-th moment of the random variable characterized by the PDF  

are given by the following expression: 

 

For discrete random variables, the moments are calculated as: 

 

The first moment defines the mean of the random variable (μ), while the second, the mean squared 

value. 
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Moments can be defined about a given number, for example, the mean. Moments about the mean 

are known as central moments, and calculated as follows: 

 

For discrete random variables, the central moments are calculated as follows: 

 

The Variance  is a measure of dispersion around the mean value. It is the central moment for 

r=2. 

 

In the case of discrete random variables, it is calculated as follows: 

 

The Gaussian probability density function 

A continuous scalar random variable x is said to be normally distributed with parameters μ and σ2 

and expressed as , if its probability density function is given by: 
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Figure 3 Gaussian PDF with μ=1 and σ2
 = 0.2 

Note that the probability density function depends only on two parameters, the mean and the 

variance. If we define a new random variable with this transformation z=(x-μ)/σ, a new normal or 

Gaussian random variable with zero mean and unity variance is obtained. It is called standard 

normal. 

 Calculation of probabilities with the Normal or Gaussian PDF 

Probabilities must be calculated by integrating the PDF. The integral of a Normal function only can 

be solved numerically, as a primitive function cannot be obtained. This calculation is quite common 

in communications. 

The `complementary error function’, or Function Q, is defined as follows: 

 

The values of Q(x) have been calculated numerically and can be found in tables in many books. The 

calculation of probabilities of normal random variables is usually carried out using this function. The 

Q(x) function is monotonically decreasing. Some features are: 

  

file://///eo-vf01/data$/Learning & Teaching/EDU/EDUxx_ATM/basic_concepts/img/gaussian2.gif
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Example: Given a standard normal random variable, calculate the probability of the random variable 

to be smaller than or equal to one. 

 

Functions of random variables 

We are interested in the study of functions where the independent variable is random. There are 

random phenomena obtained by processing the result of a random experiment, defining functions 

of random variables, where the applied processing defines the function. 

The result obtained with a function of random variable is random as well. The objective is to 

characterize statistically the new random variable, from the known characterization of the original 

random variable: we know the PDF or the CDF of random variable X, and we would like to know the 

PDF of CDF of the new random variable Y=g(X). 

Cumulative distribution function of Y=g(X) 

According to the definition of CDF,  

 Example:   

The procedure to find the CDF consists in finding the range of x which fulfills  
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Probability density function of Y=g(X) 

To find the PDF of the new random variable, the `Fundamental Theorem’ is applied, as follows: 

 Find the roots of equation y=g(x), obtaining the set  

 Find the desired PDF applying the following expression: 

 

Expectation of a function of random variable 

The mean value of Y=g(X) is obtained with the following expression: 

 

The main application of the functions of random variables is the generation of random variables with 

a desired PDF from random variables with well known PDFs, such as Gaussians or Uniform 

distributed variables. 

Joint characterization of two random variables 

Two random variables can be jointly characterized using the 'Joint Probability Density Function' or 

the 'Joint Cumulative Distribution Function', defined as follows: 

 

If the two variables are independent, the joint PDF is the product of marginal probability density 

functions: 
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This reasoning can be extended to sets of `n’ random variables, concluding that the joint PDF of a set 

of random variables is the product of the marginal probability density functions. 

 

Example: Find the PDF of the random variable resulting from the sum of two independent random 

variables, if the marginal PDF of the variables are known. 

 

This is applied to the characterization of noise which results from adding two different kind of 

interferences. The objective is to find the PDF of random variable z, as a function of the PDFs of the 

random variables x and y. 

The procedure to be applied consists in finding the cumulative distribution function of z: 

 

Figure 4 Graphical representation of integration area to find the CDF of the sum of two random 

variables 
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If both random variables are independent:  

 

The PDF of the sum of two independent random variables is equal to the CONVOLUTION of the 

marginal PDFs. An important consequence is the fact that the sum of normal or Gaussian random 

variables is always Gaussian, since the convolution of Gaussian functions is also Gaussian. 

An important question arises: Why don’t we use the Fourier transform, so that the Fourier transform 

of the desired PDF is obtained as the product of the marginal PDFs Fourier transforms? 

 Characteristic Function: It is defined as the Fourier transform of the probability density 

function. 

 

Central limit theorem 

The Central limit theorem states that the sum of a sufficiently large number of independent random 

variables tends toward a Normal random variable, independently of the distributions of the random 

variables which are added. A consequence of this theorem is this: the sample mean (normalized sum 

of realizations of a random variable) is another random variable, which probability density function 

tends to be Gaussian if the number or samples is large enough. 

A condition to this theorem is that the variance of the added independent random variables must 

tend to infinity when this number also tends to infinity. 
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Figure 5 Probability density function of the sum of independent uniform random variables 

Random signals (Stochastic processes) 

A random signal (also known as Stochastic Process) is a function of one or more deterministic 

variables (usually time, in communications), and one or more random variables: 

X (t, ω) where t is a deterministic variable, and ω is a random variable. 

Interpretation:  

 For fix ω: it is a time function known as “sample” or “realization”.  

 For fix t: it is a function of random variable. 

 For fix t and ω: it is just a number. 

The random signal is characterized with the Cumulative Distribution Function and the first order 

Probability Density Function: 

 

The moments of a random signal are functions of the deterministic variable. For example, if the 

deterministic variable is time, the mean is a time function. 
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Figure 6 Illustration of random signal meaning 

For the complete statistical characterization of random signals, the relationships among random 

variables obtained particularizing the random signals at different time instant is needed. As the 

number of random variables can be infinite, the complete characterization can be impossible. The 

relationship between pairs of random variables is usually studied, to obtain more information about 

the random signal properties, with the second order cumulative distribution function and the 

second order probability density function: 

 

These are the joint cumulative distribution function and the joint probability density function of two 

random variables, result of the particularization of the random signal in two time instants. Generally, 

these functions depends on the time instants. 



Review of Basic Concepts of Probability 
 
 

17 
University of the Highlands & Islands 

 

Autocorrelation function 

Correlation measures how predictable a random variable is from another one. The autocorrelation 

function is a function which depends on the time instants values defining the random variables and 

measures the predictability degree of two random variables defined in different time instants in a 

random signal. It is defined with the following expression: 

 

When time instants are equal, we define the Mean Squared Value: 

 

Autocovariance 

 

It measures how predictable a zero-mean random variable is from another zero-mean random 

variable. To define the zero-mean random variable, the mean is subtracted from the random 

variable. 

The Variance is obtained when both time instants are equal: 

 

Note that in a random signal, the mean and the variance are time functions. When the variance is 

zero, the spread around the mean is null, and a DETERMINISTIC signal is obtained. 

Cross-correlation of two random signals 

Similarly, the predictability between random variables obtained with two random signals could be 

studied, with the Cross-correlation: 
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Orthogonality: Two random variables are orthogonal if the cross-correlation is zero. Additionally, 

two random signals are orthogonal if all pairs of random variables from the random signals are 

orthogonal. 

Cross-covariance of two random signals 

It is defined with the following expression: 

 

Uncorrelation: Two random variables are said to be `uncorrelated’ if the cross-covariance is zero. 

Two random signals are uncorrelated if all pairs of random variables defined in the random signals 

are uncorrelated.  

Stationarity 

 A random signal X(t) is STATIONARY in STRICT SENSE, if its statistical properties do not 

depend on time, that is, X(t) and X(t+τ) have the same statistical properties (same CDFs, 

PDFs, second order CDFs and PDFs, etc.). 

 A random signal X(t) is STATIONARY in WIDE SENSE, IFF:  

o The mean is constant (does not depend on time):   

Figure 7 Meaning of “stationarity” in the mean 
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o The autocorrelation only depends on the time instants difference:  

 

o The first order PDF is independent of time: 

 

Ergodicity 

Characterization of random signals is very important in telecommunication. The available 

information is usually scarce, limited to one random sample or realization of the random process or 

random signal.  

A Stochastic Process or Random Signal is said to be an Ergodic Process if its statistical properties can 

be deduced from a single, sufficiently long, random sample of the process (realization). In these 

signals it is possible to substitute the ensemble averages with averages in time. The averages 

calculated in the time domain with one random sample of the process are constant (mean, variance, 

etc), therefore only Stationary Processes can be Ergodic: 

ERGODICITY ⇒ STATIONARITY  

 Averages in time: 

 The “sample mean” of continuous-time x(t) and discrete-time x[n] signals, respectively, are 

given by: 

 

 The “sample variance” of continuous-time x(t) and discrete-time x[n] signals, respectively, 

are given by: 
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The sample mean and sample variance of a random signal are random variables, because their 

values depend on the particular sample function over which they are calculated.  

 The time-averaged sample Autocorrelation Function (ACF) of continuous-time x(t) and 

discrete-time x[n] signals, respectively, are given by: 

 

In an ergodic process, these averages in time converge to the expectations (probabilistic mean, 

probabilistic variance and autocorrelation): 

 

Equivalently for discrete-time ergodic random signals: 
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Figure 8 Illustration of “ergodicity” 

Power spectral density of stationary processes 

The Power Spectral Density is defined as the Fourier transform of the autocorrelation function. It is 

only defined for Stationary Processes. It provides information about the distribution of power in the 

frequency domain: 

 

Properties: 

1. The Power Spectral Density is a non-negative function. 

2. The random process power is obtained by integrating the power spectral density: 
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3. The Power Spectral Density is an even function If the process is real: 

 

White noise 

White noise is a very special kind of stationary random process. It is a model very useful in 

communications, which describes, for example, thermal noise generated by electronic devices, or 

noise in many band-limited communication channels. 

Definition: X(t) is white noise in strict sense IFF X(t1) and X(t2) are independent random variables for 

any t1 and t2. 

Definition: X(t) is White noise in wide sense IFF the autocovariance function is zero:  

 

If a process is white noise in strict sense, it is also white noise in wide sense. Therefore, for white 

noise, the autocorrelation function is equal to the product of means, for any t1≠t2: 

 

The autocorrelation function of white noise can be expressed as follows: 

 

The power spectral density is constant plus a delta function in the origin, due to the mean value of 

the process in the time domain. 
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Linear and time invariant systems, with random signals at the input 

 
Figure 9 Linear and Time Invariant system with random input 

There are very useful relations between the moments of the input and output of the LTI (linear and 

time invariant) system. The cross-correlation function of the input and output processes can be 

related to the autocorrelation function of the input, and the impulse response of the LTI system.  

Here, only the relations for discrete time systems and signals are presented. There are similar 

relations for continuous time processes. 

 

Summary 

You should now be able to: 

 Describe the concept of random experiment, probability and conditional probability. 

 Calculate the probability of events. 

 Describe and characterize random variables, and calculate probabilities using the probability 

density function. 

 Characterize sets of independent random variables with the joint probability density 

function. 

 Describe what is a “random process” or “random signal”. 
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 Describe the meaning of stationarity and ergodicity. 

 Given a LTI system with random input, calculate moments of the output, the cross-

correlation function of the input and the output, and the autocorrelation function of the 

output, using the impulse response of the system.  

Further reading 

1. Gianluca Bontempi & Souhaib Ben Taieb, “Statistical Foundations of Machine Learning”, 

Open-Access Textbooks (available on-line at: https://www.otexts.org/sfml) 

2. Hossein Pishro-Nik, “Introduction to Probability, Statistics, and Random Processes” (available 

on-line at: https://www.probabilitycourse.com) 

3. Probability lessons by ActuarialPath (Probability: Lesson 1- Basics of Set Theory) 

4. Athanasious Papoulis, “Probability, Random Variables and Sthochastic Process, fourth 

edition”, McGraw Hill Education, 2015. 

 

https://www.otexts.org/sfml
https://www.probabilitycourse.com/
https://www.youtube.com/watch?v=1WONKtD2-Yw&list=PLOw9lluHPKfFja9xiHoV0voroJVN0ePB3

